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0. Introduction 

Our goal is to discuss the algebra involved in Poisson and symplectic geometry. 

There are several excellent guides to the classical commutative terrain [ 1, 9, 13, 171. 

The desire for a noncommutative differential geometry provides an incentive to isolate 

the ring theory which appears explicitly and implicitly in the traditional geometry. 

Indeed, our own interests evolved into a research project while trying to understand 

the remarkable paper “Noncommutative differential geometry, quantum mechanics, and 

gauge theory” by Dubois-Violette. The essay we have written is a sort of primer on 

symplectic algebra for ring theorists, which goes far enough to clarify some of the 

statements in [6] and answer one of his questions. We hope that in follow-up papers 

we can study other symplectic themes with algebraic overtones such as Lagrangians, 

polarizations, group actions, and quantization. 

We deal with foundations - a somewhat technical treatment of the definition of 

symplectic algebra - as well as properties of noncommutative algebras which stand on 

their own, although inspired by geometry. All of our algebras, commutative or not, are 

defined over a field of characteristic zero. 
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In Section 1 we point out a fundamental bifurcation in the theory of Poisson alge- 

bras. While there appears to be great diversity among Poisson structures which occur 

for commutative algebras, we prove that if a prime Poisson algebra is not commu- 

tative, then the Poisson bracket must be the commutator bracket up to appropriate 

scalar. 

Section 2 is devoted to a general definition of symplectic algebra, modeled af- 

ter C?(M) for a symplectic manifold M. We allow substantial latitude in what it 

means to be a “differential two-form” which induces a duality between tangent and 

cotangent vectors. This flexibility allows us to identify the most general notion of 

symplectic algebra which distills the algebraic essence of many symplectic proposi- 

tions. 

It turns out that the general version of symplectic algebra is broad enough to en- 

compass algebras of differential operators on commutative a&e domains. As a conse- 

quence, we prove in Section 3 that if 9(B) is such an algebra, then the commutator of 

two associative algebra derivations of 9(B) is inner. (This generalizes Dixmier’s theo- 

rem that the derivations of the Weyl algebra are inner.) Moreover, if B is regular then 

the Lie algebra of inner derivations is precisely the derived algebra of l&~-(9(B)); this 

is a noncommutative instance of a theorem of Calabi [2]. Next, we analyze the idea of 

a formally infinite local differential alternating two-form on the Weyl algebra, which 

was introduced by Dubois-Violette. We show that although his definition provides a 

context for some wonderful formulas, all alternating forms on the Weyl algebra have 

infinite expansions as formal differentials. Finally, we prove that if a simple algebra 

has a symplectic structure supported by a finite differential expression, then the algebra 

satisfies a polynomial identity. 

In Section 4, we concentrate on more classical commutative Poisson algebras. Given 

some extra smoothness assumptions, we show that the Poisson bracket is compatible 

with a symplectic structure when the module of all algebra derivations is generated 

by Poisson-inner derivations. Cotangent algebras, the crucial examples of regular sym- 

plectic algebras, are carefully examined. 

The two-form o which supports a symplectic algebra is required to be closed with 

respect to some differential. Say that o is a symplectic potential when o is exact. We 

answer a question of Dubois-Violette by observing that the local differential two-form 

which supports the Weyl algebra as a symplectic algebra is not a symplectic poten- 

tial. Our analysis suggests that not-commutative algebras whose commutator bracket is 

compatible with a symplectic structure have the remarkable property that all of their 

Lie algebra derivations are associative algebra derivations. Other connections with the 

Lie structure of a symplectic algebra are explored. 

1. Poisson algebras 

We shall restrict our attention to algebras over a field k of characteristic zero. All 

associative algebras will have a multiplicative identity element. 
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Definition. A Poisson algebra A is an associative algebra which is, at the same time, 

a Lie algebra under a Poisson bracket (*, *}. Operations are related by requiring that 

the bracket be an associative algebra derivation in each argument (e.g, the Leibniz rule 

{ab,c} = a{b,c} + {a,c}b holds for all a, b,c E A.) 

Commutative Poisson algebras appear in a variety of geometric and algebraic con- 

texts. We single out a few prototypes. Verifying details such as the Jacobi identity are 

left to the reader. 

Example 1. Assume 9 is a finite-dimensional Lie algebra over k. The symmetric 

algebra k[Y] is isomorphic to the polynomial ring in dimk3 indeterminates. The Lie 

bracket on ‘3 can be extended uniquely via the Leibniz rule so that k[%] becomes a 

Poisson algebra. 

Example 2. Assume that V is a finite-dimensional vector space over k and that B is 

an alternating bilinear form on V. We denote the symmetric algebra on V by k[B] and 

extend B to a Poisson bracket on all of k[!B]. For instance, if V is a two-dimensional 

vector space with basis elements S and T where ‘B(S, T) = 1 then k[B] = k[S, T] 

with {S, T} = 1. This algebra is, in some sense, the canonical example of a Poisson 

algebra; it is the coordinatization of the “symplectic plane”. 

Example 3. Suppose R is a noncommutative filtered algebra, i.e., Ro G RI C R2 c . . . 

with U Rj = R and RiRj & Ri+j. If the associated graded algebra is commutative, then 

it is a Poisson algebra. The bracket on grR is obtained as follows. If a lies in the ifh 

homogeneous component of grR and b lies in the jth component, then a pulls back to 

some CI E Rj and b pulls back to some /? E Rj. Define {a, b} to be the image of the 

commutator [a, fi] = c@ - /%x in the (i + j - 1 )th component of grR. 

If 9 is a finite-dimensional Lie algebra and U = U(Y) is its universal enveloping 

algebra, then U is filtered by U,,, which is the span of all products of m members of 

$9 for m < n. As a Poisson algebra, grU is isomorphic to k[Y] [5, Ch. 21. 

Consider the Weyl algebra Al which is generated as an algebra by p and q with 

the relation [q, p] = 1. (This may be familiar to some readers as a simple image of 

the Heisenberg algebra.) It is well known that Al has a basis consisting of all p”‘q” 

for m,n 5 0. If Al is filtered by the degree in q, then the associated graded algebra is 

isomorphic as a Poisson algebra to the example k[S, T] discussed above. 

Example 4. Any associative algebra is a Poisson algebra under the commutator bracket. 

In reading Dubois-Violette’s survey article [6], we were struck by the lack of any 

fundamental not-commutative Poisson algebra whose bracket is not the commutator. 

Much to our surprise, we discovered a bifurcation: all prime Poisson algebras which 

are not commutative fall under Example 4, “up to scalar multiple”. To be more precise, 

recall that a ring A is prime provided that the product of nonzero ideals is nonzero; 
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the extended centroid Z?(A) of a prime ring A is the center of the Martindale ring 

of quotients of A. (See [8, 1.31 for the construction.) For example, if A is a simple 

k-algebra, then Z+(A) is the center of A, which we will denote Z(A). When A is a 

prime Goldie ring, then 9’+(A) = B (Fract (A)). In general, we know that L!Z+ is a 

field [X, 1.3.11. 

Our characterization of not-commutative Poisson algebras rests on an “exchange 

formula”. 

Lemma 1.1. If A is any Poisson algebra, then [a,c]{b,d} = {u,c}[b,d] for all 

a,b,c,d E A. 

Proof. On the one hand, 

{ab, cd} = u{b, cd} + {a, cd}b 

=ac{b,d} + a{b,c}d + c{a,d}b + {a,c}db. 

On the other hand, 

{ub,cd} = c{ab,d} + {ab,c}d 

=ca{b,d} + c{u,d}b + a{b,c}d + {a,c}bd. 0 

Theorem 1.2. Zf A is a prime not-commutative Poisson algebra then there is a 1 E 

ET”+(A) such that {c,d} = I[c,d] for all c,d E A. 

Proof. We begin by extending the exchange formula. For a, b, c, d,n E A 

[a, blkd) = {a, b}b, 4 

Hence 

[~,blx{c,d} + b,bl{x,d}c = {a, b}x[c,dl + {a,b}[x,dlc. 

However, the second terms on each side of the equality are themselves equal by the 

exchange formula. Therefore, 

(*) [u,b]x{c,d}={u,b}x[c,d] foralla,b,c,d,xEA. 

In particular, 

[a,b]x{a,b} = {a,b}x[a,b] for all u,b E A. 

Since A is not commutative, we can find a and b with [a, b] # 0. Under this choice, 

Corollary 1.3.2 of [8] applies: there exists a i E b+ such that {a, b} = ,?[a, b]. 
To handle arbitrary elements c and d of A we revisit (*). Substituting, 

[a, b]x{c, d} = L[u, b]x[c, d] for all x E A. 
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Since .9”+ centralizes Z?‘“+ . A, we may replace x with an arbitrary member of Z?‘“+ . A. 

Consequently, 

[a, b]y({c,d} - n[c, d]) = 0 for all y E 5?“+ . A. 

The theorem follows because 9? . A is a prime ring. 0 

(A version of the theorem is valid for semiprime algebras since there is still a notion 

of extended centroid. Under the added assumption that some commutator [a,b] is not 

a zero divisor, the same conclusion holds.) 

As an application, consider the Weyl algebra Al. It is simple and its center is k. 

Hence, any Poisson bracket on Al is associated with a scalar 1 E k such that {a,b} = 

,?[a, b] for all a, b E Al. The algebra of n x n matrices over k has the same property. 

One may ask if it is truly necessary to worry about scalars from Z??. Look at 

the three-dimensional nilpotent Lie algebra spanned by x,y and z with z central and 

[x, ~1 = z. Let U be its universal enveloping algebra. Then [U, U]U = zU. (This is 

a consequence of the general observation that [U(3), U(S)]U(Y) = U+( [9, S])U(C@) 

where U+ denotes the augmentation ideal.) Thus, it makes sense to define a Poisson 

bracket on U by {a, b} = ~-‘[a, b]. 

There is a way to resolve the apparent problem of a lack of noncommutative Poisson 

algebras: find a more appropriate definition of general Poisson algebra. This is done in 

[18]. We will not follow this direction in the present paper. 

2. Symplectic algebras 

Historically, the notion of Poisson algebra was invented to abstract fundamental for- 

mal properties of CO”(M) for a symplectic manifold M. Such a manifold is char- 

acterized by having a bijective pairing, at each point, of a tangent vector with a 

cotangent vector, which is induced by a closed differential 2-form. Recalling that 

vector fields on A4 act as derivations of COO(M), the rough idea is to use deriva- 

tions to “contract” the 2-form so that a rich supply of l-forms is obtained. (In- 

formally, the contraction of 2-forms is a ratcheting up of the classical identifica- 

tion of cotangent vectors df as functionals on tangent vectors, namely (a/ax, df) = 

af /ax. One may think of the derivation alax as contracting a l-form df to a O- 

form af /ax.) Several authors [l, 6, 131 have come up with the general notion of 

symplectic algebra to capture the geometry of a symplectic manifold in the ring 

C”(M). There are competing definitions which are not all equivalent. Rather than 

take sides, we will give a definition which includes all proposals. The price we pay is 

a somewhat technical description of appropriate candidates for an “algebra of differen- 

tials”. 

The reader put off by abstractions should skip down to the examples. 

We always consider algebras over a field k of characteristic zero. If A is a k-algebra, 

then Derk(A) denotes the Lie algebra of all k-linear associative algebra derivations from 
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A to itself. To those accustomed to studying commutative algebras, it is worth warning 

that Derk(A) is not generally an A-module; rather, it is a 2(A)-module. 

Our “differentials” will reside in a differential non-negatively graded k-algebra A 

equipped with a degree +l differential d. The candidate for “contraction” map will 

be a DGA-derivation of A. By this we mean a k-multilinear map f, homogeneous of 

degree - 1, such that for homogeneous elements CI, p E A we have 

f(d) = f(a)P + (- 1 P’af(P). 

As an immediate consequence, DGA-derivations of A are left do-module maps. 

Definition. Let A be a k-algebra. A differential graded k-algebra (A, d) with A0 = A 

is a source of d$krentials for A provided that for each X E Derk(A) there is a DGA- 

derivation ix of A such that for all X, Y E Derk(A) 

(i) ix(da) =X(a) for all a E A; 

(ii) the map sending X to ix is left %‘(A)-linear (i-linearity); 

(iii) ixiy + iyix = 0 (transposition); and 

(iv) [ixd + dix, iy] = i[,y,y] (bracket). 

In the differential geometry literature ix is called the “interior product” as well as the 

“contraction” while iud + dix is the “Lie derivative” associated to X. For the reader 

concerned about the formulas (iii) and (iv), it is worth noting that in many examples A 

is generated by A0 and A* ; in such cases the DGA-derivation property of ix uniquely 

determines the contraction, making these formulas calculations. 

We are indebted to J. Stasheff for pointing out that our notion of a source of differ- 

entials is essentially H. Cartan’s definition of a DGA algebra over T’(A) which is 

operated on by a Lie algebra, namely Derk(A) ([3]). Cartan replaces (iii) with the 

equivalent assumption that each iz has square zero and adds the illuminating observa- 

tion that the map which sends X to ixd + dix is a Lie algebra morphism. (While this 

is an axiom in [3], it readily follows from (iii) and (iv).) 

There are four fundamental examples of sources of differentials to keep in mind. 

Example 1. AZt 

Define AZt”(A) to be the vector space of 2’(A)-multilinear alternating maps from 

(Derk(A))” to A. (Strictly speaking, we should write AZt&,)(Derk(A),A) but we hope 

no ambiguity will arise with the abbreviated notation.) If m E AZt’(A) and o’ E Alp(A), 

then the product ow’ lies in AZ@(A) with 

1 1 -- 
r! s! 

fl), . . 
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The differential d is defined by 

dw(&, . . . ,&)=C(-1)‘x,(wG ,..., 2, >..., xl)) 

+C(-l),+S w([X,,X,], X, )...) 2, )...) Xi )...) 2, )...) X,) 
T<S 

where 1 means “omit”. For example, if a E A = Alto(A) then 

du(Xo) =X,(a). 

Note that we have described the classical Chevalley-Eilenberg cochain complex for 

Lie algebra cohomology. 

The contraction ir is given by 

(iY (~)M )...) 27,) = o(Y,& )...) X,). 

We shall see that AZt(A) is, in some sense, the most general source of differentials. 

Example 2. DAZt 

DAZt(A) is the differential graded subalgebra of AZt(A) generated by A. To make 

this more concrete, recall that if a, b E A then (da)b = d(ab) - a(db). Thus, every 

element of DAZt”(A) is a finite sum of elements with the form uodulduz . . . da, for 

us,. . . , a, E A. In this case one can use the formula describing a DGA-derivation to 

arrive at the (usual) explicit formula 

ix(uodul . . .du,) = e(-1)‘~‘a0 dq da2...d&...du, 
f=l 

where dci, denotes the replacement of this symbol with X(Q). 

Example 3. s2 
It may have occurred to the reader that DAZt(A) is a generalization of the de Rham 

algebra Q(A) (the exterior algebra on Kiihler differentials) for commutative algebras. 

This is not quite the case, which the reader should be aware of when comparing 

with [6]. Assume that A is commutative and let (-)* denote the dual Hom~(-,A). 

Then DAZt’(A) is nothing but (Derk(A))*. However, Q’(A) is the module of Kahler 

differentials and Derk(A) N (@(A))*. (Amusingly enough, the isomorphism is given 

by sending X to ix.) Thus, DAZt(A) can be identified with O(A) only when G?‘(A) is 

reflexive, the usual problem of double duals. Nonetheless, the formulas for d and ix 

in O(A) are formally the same as those in DAZt(A). Moreover, the distinction we are 

making disappears when A is regular. 

Example 4. UC2 
Connes [4] has brought into prominence a universal noncommutative version of 0. In 

this construction, UQ” is obtained by adjoining a new identity element to A. The failure 
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to have the bottom component coincide with A does not fatally affect the potential of 

UQ as a source of differentials. In this paper, however, we do not study the universal 

construction and, so, leave this difficulty for another time. 

Definition. Let A be a k-algebra and assume A is a source of differentials for A. Then 

A is A-symplectic provided there is a w E A2 such that do = 0 and dA lies in the 

image of the linear map Derk(A) -+ A’ which sends X to ix(w). In this case we say 

that w supports the symplectic structure on A. 

In [13], Loose requires that the map sending X to ix(w) be injective. This require- 

ment is redundant. 

Theorem 2.1 (Nondegeneracy). Let A be a A-symplectic algebra supported by w. The 
map Derk(A) + A’ which sends X to ix(w) is injective. 

Proof. For a E A we may choose a derivation ham(a) of A such that ihamca)(w) = 

d(-a) in A’. If ix(w) = 0 then 

0 = iham(a+X(w) = -iXiham(o)(w) = -ixd(-a) = X(a). 

Since X(a) = 0 for all a E A, we conclude that X = 0. 0 

If it happens that A is supported by w E AZt2(A), then Theorem 2.1 says that the 

map which sends X to w(X, -) is injective : the form w is nondegenerate. 

Some comments are in order about ham(a). First of all, “ham” is an abbreviation 

for “hamiltonian vector field”. Second, ham(a) is uniquely determined by a in that 

there is only one derivation Z such that iz(w) = d(-a). (This is immediate from 

the theorem.) Since d and the map sending X to ix are k-linear, uniqueness forces 

ham : A + Derk(A) to be k-linear. 

We now connect an arbitrary source of differentials A with AZt(A). For n > 0, w E 

A” and Xi,. . . ,X, E Derk(A), define 

W(Xi,. . . ,X,) = ix,! . . . ix2ix, (w). 

Then W takes values in A because ix reduces degree by one. It is 9’(A)-multilinear 

by i-linearity and alternating by the transposition property. Thus ~5 E A/t”(A). Since 

the contraction map is a left A-module homomorphism, the assignment of w to 3 is a 

left A-module map. The proof of the next theorem is technically unpleasant and best 

left to a second reading. 

Theorem 2.2. Let A be a source of difSerentials for A = A’. 
(a) Zf a E A, then (da_))” agrees with da in AZt’(A). 
(b) If 6 E A’, then d0 = (do)“. 
(c) Zf w E A2, then dij = (dw)“. 

Proof. Let X, Y,Z E Derk(A). 
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(a) (da)“(X) = ix(da) = X(a) = (da)(X) w h ere the first da lies in A’ and the 

second lies in Alt’(A). 
(b) d&X, Y) = Xi?(Y) - Y&X) -@[X, Y]) 

= ixdir(8) - i,dix(@ - i,x,rI(0) 
= i,ixd(e) - dixir(e), using the bracket property. 

But ixir(A’) = 0 and iYiX(d0) = (de)-(X, Y). 

(c) This calculation is tricky. It depends on the identity irilu,~] + ilar/lir = 0 for 
A. To temporarily simplify notation, we will use upper and lower case letters so that 
in = b. Expand the left side 
of differentials, to obtain 

(*) dtuu + (tduv + udvt + 

We wish to calculate 

of the identity using transposition and bracket for sources 

vdtu) + (tudu + uvdt + otdu) + tuud = 0. 

dG(X, Y, 2) = XW( Y, Z) + YG(Z,X) + Z&(X, Y) 

-qx, Yl,Z) - XKZl,W - ~w,~l, Y) 

= (xdzy + ydxz + zdyx - z[x, y] - x[y,z] - y[z,x])(w). 

Now [x, y] = dxy + xdy - ydx - yxd, so 

d&(X, Y, Z) = (2xdzy + 2ydxz + 2zdyx + 2zydx + 2zdy + 2yxdz 

+zyxd + xzyd + yxzd)(o). 

Use the transposition property for contractions to write 

zyxd + xzyd + yxzd = 3zyxd. 

Finally, apply (*) along with the observation that 

(zyx)(o) = 0 for o E A2. 

We substitute 

d&(X, Y,Z) = -2zyxd(o) + 3zyxd(o) = zyxd(co). 0 

It is possible to iterate formula (*) to obtain the general assertion that d&j = (do)” 
for all cc). 

Corollary 2.3. Suppose aj, bj,cj E A. If 4 = C ajdbj in A’, then 6 = C ajdbj in 
Alt’(A). Zf p = C ajdbjdcj in A2, then p = C ajdbjdcj in AZt’(A). 

Proof. For the first assertion, 

4 = Cajdbj by A-linearity 

=c ajdbj by (a) of the theorem. 
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AS to the second, /l = C ajd(bjdcj), SO 

p = C aj(d(bjdcj))” by A-linearity 

= 
c ajd(bjdcj)” by (6) of the theorem 

= Cajd(bjdcj) by the first half of the proof 

= 
c ajdbjdcj. 0 

Corollary 2.4. If A is a A-symplectic algebra supported by w, then A has an Alt2- 
symplectic structure supported by 0. Moreover, the functions ham : A -+ Derk(A) 

dejned relative to o and 63 are identical. 

Proof. If a E A then iham(_-a)(o) = da. Thus ix o iham(_-a)(co) = X(a). We can interpret 

this last equality in AZt(A): 

&(ham(-a),X) = X(a), i.e., iham = da in A/t(A). 

This proves da is some contraction of 6 and establishes the nonambiguity of ham. 

Finally, do = 0 implies d63 = 0, with the help of Theorem 2.2~. 0 

The second corollary says that AIt-symplectic structures are the most general possi- 

ble. From now on, the unprefixed term “symplectic” will mean AIt-symplectic. 

At long last, we produce a Poisson algebra. If A is a A-symplectic k-algebra sup- 

ported by o then A is a Poisson algebra under the bracket 

{a, b) = ham(b)ham(a)(~) for a,b E A. 

= G(ham(a), ham(b)). 

It is obvious that the bracket is alternating. The bracket is bilinear because ham is 

linear. By applying the basic equality of Corollary 2.4, 

&(X, ham(u)) = X(u) 

and the fact ham(a) is a derivation, we derive 

{a, bc} = b{a, c} + {a, b}c. 

Jumping the gun a bit, notice that “ham” coincides with “ad” if we forget the 

associative algebra structure on A. (The reason for the new jargon is that for not- 

commutative Poisson algebras “ad” is ambiguous - it may refer to {*, *} or the com- 

mutator [*, *].) It is well known that the Jacobi identity is equivalent to ad being a 

Lie homomorphism. Hence, the Poisson bracket satisfies the Jacobi identity provided 

[ham(a),ham(b)] = ham{a,b} f or all a, b E A. This is a consequence of the cocycle 

requirement d& = 0: 
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0 = dG(X, hum(u), hum(b)) = X{a, b} - hum(u)x(b) + hum(b)x(u) 

-[x, hum(u)](b) - iG([hum(u), hum(b)],X) - [hum(b),X](u). 

Thus, 

0 =x{a,b) - {Mu + ww)) - W{4bl - {%vb)l) 

-~([ham(a), ham(b)l,X) - ((b,X(a)) - X{b, a)). 

Simplifying, we obtain 

~(X,[hum(u),hum(b)]) =X{u,b}. 

But X{u,6} = &(X,hum{u,b}). We are finished by the nondegeneracy of 0. 

Definition. Let A be any Poisson algebra. For each a E A define hum(u) : A -+ A by 

hum(u)(b) = {u,b}. Let Hum(A) denote {hum(u)lu E A}. A Poisson derivation of A 

is an associative algebra derivation which is, at the same time, a Lie algebra derivation 

for the bracket {*, *}. Denote the set of all Poisson derivations by PDer(A). 

We return to the “ad/hum identification”. If x is an element of a Lie algebra 3, 

then ad(x) is a Lie algebra derivation of 3 and ad ‘3 is a Lie ideal in the Lie algebra 

of all Lie derivations of 9. (Indeed, [&ad(x)] = ud(&x)).) Notice that P&r(A) is 

a Lie algebra because it is the intersection of the Lie algebras of associative and Lie 

derivations. As a consequence, Hum(A) is a Lie ideal of PDer(A). 

As might be expected, PDer(A)/Hum(A) is the first cohomology group for some 

cohomology theory, at least when A is commutative [9]. We will not pursue this 

further. Instead, we record a lemma attributed to R. Palais in the commutative case 

La 

Proposition 2.5. If A is a symplectic algebra then 

[PDer(A), PDer(A)] c Hum(A). 

Proof. Assume that the symplectic structure is supported by o E Al?(A). We show 

that if X, Y E PDer(A) then 

[X, Y] = hum w(X, Y). 

First notice that, since X E PDer(A), we have 

[hum(u),X](u) = (u,X(u)} -X{U,U} = -{X(U),U} = -(humX(u))(u) 

for all ZJ E A. We apply the cocycle property in the case of the three derivations 

hum(u),X, and Y and we use the observation above, 

hum(u)w(X, Y) +3X(u) - YX(u) + o(humX(u), Y) 

- [X, Y](u) - o(humY(u),X) = 0, 
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i.e. 

ham(a)w(X, Y) + [X, Y](a) = 0. 

But 

ham(a)w(X, Y) = {a, 0(X, Y)} 

= -{4x, Y), 0) 

= -ham(w(X, Y))(a). 

Thus [X, Y](a) = hum(o(X, Y))(u). Since a is arbitrary, we have the desired 

formula. •I 

Calabi [2] has proved that when A = CO”(M) for a symplectic manifold M there is 

equality 

[PDer(A),PDer(A)] = Hum(A). 

We do not know to what extent this is true for algebraic examples. (But see Corollary 

3.6.) 

Definition. Let A be a Poisson algebra. The Poisson center of A, denoted 92(A), is 

{u E A]{u,b} = 0 for all b E A}. 

The Poisson center is both a Lie ideal and an associative subalgebra of A. When the 

Poisson bracket is the commutator bracket, we have 93(A) = %(“(A). 

Proposition 2.6. If A is a symplectic algebra, then every derivation of A vanishes on 

the Poisson center. 

Proof. Suppose the symplectic structure is supported by w. For any x E Derk(A) and 

UEA, 

w(X, hum(u)) = X(u). 

If a E 95?(A) then hum(u) = 0. The result follows. 0 

Propositions 2.5 and 2.6 may be the key ingredients of an internal ring-theoretic 

description of those symplectic algebras whose Poisson bracket coincides with the 

commutator bracket. In what follows, we adopt the traditional terminology for Hum(A) 
when using the commutator; it is the Lie algebra of inner derivations IDerk(A). If the 

symplectic structure on A induces the commutator bracket, every associative algebra 

derivation is automatically a Poisson derivation. Thus, in this case, 

[De% (A ), Derk (A )I 2 ID@% (A 1 

by Proposition 2.5. Also, all derivations of A vanish on S“(A) by Proposition 2.6. 
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Suppose, as a special case, that every algebra derivation of A is actually inner. Then 

A is symplectic under the well-defined “commutator” form 

o(ad(a), ad(b)) = [a, b] for all a, b E A 

Obviously, the Poisson bracket is the commutator bracket. We can do somewhat 

better. 

Theorem 2.7. Let B be a k-algebra such that 

(a) all algebra derivations of B are zero on b(B); and 
(b) Derk(B) = ZDerk(B) f & where d is an abelian Lie subalgebra of Derk(B). 

Then B has a symplectic structure whose Poisson bracket is the commutator bracket. 

Notice that hypothesis (b) implies that [X, Y] E IDerk(B) for all X, Y E Derk(B). 

Proof. We use “ad” for the commutator bracket. The argument depends on the el- 

ementary observation that ad(a) = ad(b) for a, b E B if and only if a - b E Z(B). 
Thus there is an alternating 2’(B)-bilinear form (*,*) : ZDerk(B) x IDerk(B) 4 B 

given by (ad(c),ad(d)) = [c,d]. Hypothesis (a) tells us there is a Z(B)-bilinear form 

(*,*) : Derk(B) x IDerk(B) -+ B given by (X,ad(a)) =X(a). 
According to hypothesis (b), a vector space complement 2 Cd to IDerR in 

Derk(B) gives rise to a Lie algebra direct sum 

Derk(B) = IDerk(B) @ 9 

with 9 an abelian Lie algebra. If X E Derk(B), write X = Xs + Xi following this 

direct sum. For X, Y E Derk(B) set 

4x, y > = (X0, Yo) + (Xl, Yo) - ( Y, Jo) 

Clearly, o is alternating and 3(B)-bilinear. Moreover, if X0 = ad(a) then 

6% ad(b)) = (ad(a), ad(b)) + (Xi,ad(b)) 

= [a, bl + XI(~) 

= (ad(a) + 4 )(b) 

=X(b). 

In order to check the cocycle condition on w, we use a trick borrowed from the 

theory of rings of differential operators. Imbed B in Endk(B) by associating each b E B 
to left multiplication by b. For each x E Derk(B) choose bx E B such that ad(bx) = X0. 
Define hx E &zdk(B) by 
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Using hypothesis (b) we see that 

Px,hyl= [h,brl+ Wl,bYl + Px, Yl1-t Lx,, Yll 

= [b,bYl+ wl,bYl- [Yl,h71 

= 0(X, Y). 

To prove dw = 0 notice that, for v E B, 

X(u) = (ad(b))(v) +x,(v) 

Hence, X(o(Y,Z)) = [hx, [hr,hz]]. Thus, the sum of the first three terms of the 

cocycle expression vanishes by the Jacobi identity. A second calculation shows that 

[X, Y] = ad&C, Y). Hence, 

-0(1x, YIZ) = wV,adWL Y)) = Z(QV, Y)> = Wz, Ckr,h~ll. 

The last three terms of the cocycle expression are also the terms of the Jacobi 

identity. 0 

3. Not-commutative algebras 

At best, we would like to determine all algebras possessing a symplectic structure. 

At worst, we would like to have large classes of algebras which are (or which are 

not) symplectic. These two problems depend on the particular source of differentials 

we choose. In the exposition below, we proceed from general to special sources. 

Throughout this section we examine prime algebras which are not commutative. By 

virtue of Theorem 1.2, there is no real loss of generality in assuming that if there is 

a symplectic structure, the Poisson bracket is the commutator. 

We first show that if A is a commutative k-affine domain then the ring 9(A) of 

differential operators on A is symplectic. We defer to [14] for many details. Recall that 

Q(A) consists of k-endomorphisms of A; in regarding A as a left 9(A)-module we 

write f * a for the evaluation of f at a. It is frequently more tractable to calculate in 

the “little” ring of differential operators, denoted D(A), which is the subalgebra of 9(A) 

generated by A and Deq(A). For instance, D(A)llerk(A) * 1 = 0. As a consequence, 

we have the following identity for u E D(A)Derk(A) and a E A: 

(0) [u,a]*l =24*a. 

(Indeed,[u,a]*1=u*(u*1)-u*(u*1)=u*u-O.)Asecondconsequenceis 

that D(A) = A @ D(A)Deq(A). Putting these two observations together, we see that A 

is a maximal commutative subalgebra of D(A). 
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Definition. Let A be a commutative k-algebra. Then 

A-4) = {i: E Derk(D(A))li(A) = 0). 

Lemma 3.1. %(A) is an abelian Lie subalgebra ofDerk(D(A)). 

Proof. Let [ E 2(A). Then [ may be applied to Deq&I) considered as a subset of 

D(A). Since [Derk(A),A] CA we have 

Thus, [(Derk(A)) centralizes A in D(A). By the remark above, 

Suppose ii, 12 E 2(A). To test that [[I, 121 = 0, we need only test this derivation on 

algebra generators of D(A), i.e., on A U Der&4). The commutator obviously vanishes 

on A. Furthermore, if X E Der,+(A), then [z(X) E A, so ((1 o [2)(X) = 0. We conclude 

that Kl,i21(~) = 0. 0 

Theorem 3.2. Let L be a jinitely generated Jield extension of k. Then 

Derk(D(L)) = IDerk(D(L)) + 2(L). 

Proof. We may write D(L) = L[ql,. . . ,qn] where ~1,. . . , p,, is a transcendence base 

for L over k and qj = a/apj (see [14, 15.251). Let a E Derk(D(L)). Since [pi, pi] = 0, 

0 = 4[Pi, Pjl) = [@(Pi), Pjl - [4Pj>3 Pil. 

That is, 

[a( Pi), Pjl = [a(pj), Pil. 

It is easy to check that if lqf’ . . . qz E D(L) with I E L, then 

where the differentiation takes place as if 1 were a constant and the qi were commuting 

variables. Thus, 

&(HPi)) = $(a(p,)) for all id 
I 

It is a standard result from elementary calculus - the existence of potentials for 

gradients - that there must be a “polynomial” h E L[ql, . . . , qn] such that 

&(h) = a(pi) for all i. 
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(To be pedestrian, it is easy to formally integrate polynomials in the qi. For example, 

when n = 3 set hl(ql,q~,q~) = ~ct(pl)dql holding q2 and q3 fixed, set hz(q2,qJ) = 

J(a(p2) - ahlldq2)dq2 holding q3 fixed, and set hs(q3) = J(x(p3) - (ahllaq3) - 
8h2/dq3)dq3. Let h = hi + hz + hs.) 

We have [h, pj] = U(pj) for j = 1,. . . , n. By the unique extension of derivations to 

fields of quotients and finite field extensions (in characteristic zero), we conclude that 

a and ad(h) agree when restricted to L. In other words, c( - ad(h) E y(L). 0 

Now assume that L is the field of fractions of A. In order to descend from 9(L) to 

9(A), we need to apply a result of [16] to the effect that 9(L) is a classical left ring of 

quotients of 9(A). (We sketch a proof by induction that if f E S&L), the mth level of 

the filtration, then there is a nonzero s E A with sf E 9(A). Let al,. . . , a, be k-algebra 

generators for A. By induction there is an s E A\(O) such that s[f, ai] E 9(A) for all i 

and sf * 1 E A. By the Leibniz product formula, s[f ,A] c 9(A) whence [sf ,A] C 9(A). 

If u E A then (sf)*a = [sf,a]* 1 +u(sf)* 1. Since sf *AcA we have sf E g(A)). 

Theorem 3.3. Let A be a commutative k-uflne domain with jield offractions L. Then 

Derk(g(A)) = ZDerk(&4)) + Y(A). 

Proof. By the remarks preceding the theorem, derivations of 9(A) extend uniquely 

to derivations of 9(L). But 9(L) = D(L) [14, 15.5.61. Thus, if CI E Derk(g(A)), we 

may extend it and write CI = ad(h) + T in Derk(D(L)) with h E D(L) and T E y(L), 
according to the previous theorem. Since D(L) = L $ D(L)Derk(L) and udL C y(L), 

we may assume h E D(L)Derk(L) (i.e., absorb the udL contribution into T). 
Now a(A) G 9(A) and T(A) = 0 because A CL. Hence, [h,A] C 9(A). By identity 

(0) in L, we have h*ACA. But 

g(A) = {f E g(L)lf *A CA} 

[14, 15.5.51. Thus, h E 9(A). Also, (c( - ud(h))(g(A))c 9(A) implies T(g(A))c 
9(A). We conclude that CI = ad(h) + T/g(A) inside Derk(a(A)). Cl 

Corollary 3.4. If A is a commutative k-afine domain then 9(A) has a symplectic 
structure compatible with the commutator bracket. 

Proof. We shall apply Theorem 2.7 with B = 9(A). Its hypothesis (b) is the content 

of the previous theorem. To verify hypothesis (a) we must identify the center of 9(A). 
It is enough to know that the center is a finite field extension of k because derivations 

which vanish on k also vanish on any finite extension. 

There is no loss of generality in replacing A with its field of fractions L. Write 

D(L) = L[qi , . . . , qn] as in Theorem 3.2. Since the center of D(L) centralizes L, it lies 

in L. Thus, a E .ZZ’(D(L)) satisfies a minimal polynomial over k(pl,. . . , pn): 

urn + fm_,um-’ +...+f~u+f~=O withf,Ek(pi,...,p,). 
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If any ft lies outside k, we can find a qs such that 

hftl = g(h) # 0. 
s 

Therefore, 

$(fm_,)P +. . . + -&(f& + $-(fo) = 0 

s 3 s 

with at least one nonzero coefficient. This contradiction to minimality ensures that a 

is algebraic over k. 0 

We can get more information if we assume that A is a regular affine domain. There 

are many equivalent formulations of regularity; the one that will be most useful for us 

is that L?‘(A) is a finitely generated projective A-module [ll, 7.41. 

Recall that if P is a finitely generated projective A-module, then P has a projec- 

tive basis (p,,fi),(pz,fz), . . ..(pm.fm) where pj E P*. By this we mean that x = 

C fj(x)pj for all x E P. If L is the field of fractions of A, then the rank of P is the 

dimension of L @A P as a vector space over L. But the rank can also be calculated 

intrinsically. If charA = 0, the rank is the trace of the identity endomorphism of P, 

i.e., C fj(Pj). 

Now suppose that P = Q’(A), so that (Q’(A))* N Derk(A). We will identify 

ix E (Q’(A))* with X E Der&4) and choose a projective basis (fi,Xl),(f2,&), . . . , 

(fm,Xm) for @(A), where Xi E Der&). It follows that (X,,f,),(X,,f2),...,(X,,f,) 

is a projective basis for &Q(A) with 

(If f = C uid~i, then f(Y) = C uiY(vi).) 

We can do somewhat better. If (fi,X,),(f2,X2),...,(fm,Xm) is a projective ba- 

sis for Q’(A), then we may assume that fj = bjdcj for some b and c in A, then 

(dq, blX,>, (dc2, b&2), . . . (dc,, b,X,) is also a projective basis for Q’(A). Set q = 
- 

bjXj. Then (Y,,dal),(Y2,daz) ,..., (Y,, &,,) is a projective basis for Derk(A). In other 

words, Z = CZ(aj)Yj for all Z E Derk(A). With a slight abuse of notation, we shall 

write this projective basis as (Yi, al ), (Yz, az), . . . , (Y,, a,). 
We revisit Calabi’s Theorem. 

Theorem 3.5. Let A be a commutative regular k-a&e domain. Then 

[%4),W)l = .%4). 

Proof. We will freely use the theorem that 9(A) = D(A) for regular A [14, 15.5.61. 

Recall that D = D(A) has a natural filtration 
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where D, = (Derk(A))m+D,_l. Let (Y~,u~),(Y~,uz),...,(Y~,u~) be a projective basis 

for Derk(A) with aj E A. We claim that 

(*) iffED, then c [f,a,]Y, = mf (mod 0,-l). 

Induct on m. If m = 0 the assertion amounts to the fact 

For m = 1, it is the fundamental property of a projective 

holds for arbitrary m, we may assume that f = fi f2 where _ 

(Der~(A))“-’ : 

that A is commutative. 

basis. To prove that it 

ft E Derk(A) and f2 E 

c [f?4YS = c [flf2,4Y, 

= (m - l)flf2 + flf2 (mod R-1 > 

= mf (mod D,-1). 

We complete the proof of the theorem with a second induction, showing that if 

g E D,, then g E [D,D]. Begin the induction at m = -1, with the convention that 

D-1 = 0. Assume the truth of the assertion for m - 1. If g E D,, then (*) and the 

rank formula yield 

E mg + runkDerk(A) . g (mod 0,-l), 

But [g Y,, a,] E [D, D]. Thus, induction implies 

(m + runkDerk(A)) . g E [D, D]. 

The result follows because the rank is greater than zero. 0 

Corollary 3.6. If A is a regular k-afj’ine domain, then 

[Derk(9(A)),Derk(WA))l = IDerG@(A 

Proof. According to Corollary 3.4 and Proposition 2.5, we need only check that 

IDerk(g(A)) c[Derk(9(A)),Derk(9(A))]. Any inner derivation has the form ad g for 

some g in 9(A). By the theorem, 

ad g E ud[LS(A),C@(A)] = [IDer~(93(A)),ZDer~(??@A))]. 0 

Given Corollary 3.4, we might become greedy and ask, for example, if the Weyl 

algebra Al is supported by some w given by a “formula with differentials”. In fact, there 
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is a remarkable formula which comes from the Moyal quantization for the symplectic 

plane. Recall that Ai = k[p, q] subject to the relation [q, p] = 1. If u, u E Ai then ([6]) 

b.ul=~ym,PJJ Y..., P1[&4,4 >...> sl-[~P,_..,p?[\u,q,_..,?l), 
.-- 

n p’s n q’s n p’s n q’s 

where [a, b, b, b, . . . , b] = [. .. [[[a,b],b],b] ... b]. Since derivations of Al are inner 

([Dix]), the associated commutator form is 

CO= c y%P,P,P ,*..> plkq T..., 41. 
n . -- 

n p’s n q’s 

(Note that in counting the p’s (or q’s) we include the one to the right of the a.) 

Both of these expressions require some explanation since they are formally infinite 

series. They make sense because all but finitely many terms vanish when evaluated on 

a fixed element of Ai. Based on this observation, Dubois-Violette introduces a new 

source of differential forms. 

Definition. Let A be a k-algebra. LDAZP(A), the local differential alternating forms, 

consists of those w E AZP(A) such that for each finite dimensional subspace I’ of 

Derk(A) there is a WY E DA/P(A) such that w(Vm = WY. 

The choice of o given in the formula above resides in LDAlt2(A1). It turns out 

that, although the formula is quite wonderful, the source of differentials can be thought 

of in more elementary terms. We shall argue that some formula of the type we have 

exhibited must exist because LDAIt(Al) = AZt(Al). 

Our analysis rests on a single calculation in Ai. For each (m,n) E N x N with 

(m,n) # ((X0) let XC,,,) be the derivation ad(pmq”). The collection of all Xc,,,) 

constitutes a k-basis for Derk(Ai). Define D(m,n) E Ait’ by 

[,dp, P, f,. . . ,?-I if n > 0, 

D(mTn) = 

n p’s m q’s 

[U] if n = 0. 

m q’s 

The formula below can be proved directly by induction. 

u--m o--n 
(-l)%(u- l)... (u-m+ l)v(u- l)...(u--+ 1)rp q 

= if m < u and n 5 v, 

t 0 otherwise. 

To exploit the formula, we will need a lengthy digression which is a particularly simple 

triangular instance of Moebius inversion. 
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Proposition 3.7. Let V be u vector space over k and let {vu ICI E &} be a basis for 

V well-ordered by (&, 5). Assume that A is a k-algebra and that for each 01 E &‘, 

there is an f’ E Homk( V, A) such that 

(i) given /J’ E d, there are only finitely many y such that f ‘(VP) # 0; 

(ii) f’(vg) = 0 for cx > p; 
(iii) f”(v,) is always a unit in A. 

Then every member of Homk(V,A) can be written uniquely as a formally injinite 

sum CrEsl a, f’ with a, E A. 

Proof. First observe that C, a, fy makes sense by condition (i). Consider the issue of 

uniqueness next. We must show that if C, aaflX = 0, then each a, = 0. If not, choose 

,5 minimal such that ag # 0. By (ii), (CM a,f “)(vg) = asf8(vD). Condition (iii) tells 

us that asffi(va) # 0, a contradiction. 

As to existence, suppose that g E Homk( V, A). We define coefficients a, inductively. 

If a is the smallest element of d set a, = g(vE)(fE(vE))-l. If o is the smallest element 

of d for which a, has not yet been defined, set 

4 = 
( 

g(vb) - Ca,f’(vb) (f”(v,))Y’. 
T<Q ) 

We have designed h = CrxE,& a, f’ so that 

h(v,) = xa7fT(vn) = g(v,) for all CJ E d. 0 
&a 

We claim that if the hypotheses of Proposition 3.7 are assumed for V and Homk 

( V,A), then we can extend the conclusion of the proposition to AZt( V”,A), the space 

of alternating n-forms from V to A. For Cc, b E d” we write j = (B(l), . . . , B(n)) and 

v/j = (q(l),qs(2),..., v,Q)) E V”. Define f’ E Homk( V”,A) by 

f”(v,-) = c (-l)"f"(1'(~~~(l,)f"(2'(~~,(2,)~ ~P~&h(n,). 

nESym(n) 

Then f” is a k-multilinear alternating function. Consequently, f a is determined by its 

action on the subset of the basis consisting of all IJ~ such that p(1) > j?(2) > . . > 

b(n). Set A”& to be the corresponding subset of &“’ consisting of those n-tuples whose 

coordinates are in strictly decreasing order; set W to be the span of {v~~fi E A”,&}. It 

is easy to verify that A”& is a well-ordered set under the left-to-right lexicographic 

order. We examine each of the conditions of the proposition for W and Homk( W, A). 
Condition (i) obviously holds. Suppose Cc > fi; we may assume that the first t - 1 

coordinates of E and fi agree but a(t) > P(t). If n: E Sym(n) and n(t) 2 t, then 

/h(t) 5 /3(t), so /h(t) < a(t). Hence fa@)(v~~(~)) = 0. If n(t) < t, then there is an s 

with 1 5 s < t - 1 and rc(s) 2 t. Now 01(s) = b(s) > p(t) 5 /?(x(s)), so f a(s)(vgnCsj) = 
0. Since each term off ‘(vg) vanishes, we have f ‘(vg) = 0 : condition (ii) is verified. 

Finally, if 7~ # 1, then there must be an s with n(s) > s, whence LX~(S) < a(s). Thus 
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f”(S)(~,,(,)) = 0. It follows that f”(ui) = fa(‘)(v,(r)). . . f”(“)(v,(,)), a product of units 
in A. 

We summarize our observation. 

Corollary 3.8. Under the hypotheses of the proposition, every member of Alt( V”,A) 

can be written uniquely as a formally infinite sum 

c a,-f”; a,- E A. 

CiEA”.d 

As promised, we can now dispense with the distinction between local and global 

Alt. 

Theorem 3.9. LDAZt(A1) = AZt(A1). 

Proof. Set ~zI = {( m,n) E N21(m,n) # ((40)) and g’ rve it the lexicographic order. 

(One can also order by first comparing the sum of the coordinates and then using 

the lexicographic order.) The three conditions of Proposition 3.7 are immediate from 

formula (*) for D(m,n). 0 

Using the notation we have developed, the alternating bilinear form which induces 

the commutator bracket is 

(-1) 
c- n, D(O, n)D(n, 0). 
n>O . 

Finally, we investigate prime not-commutative algebras which are D Alt-symplectic. 

Dubois-Violette has observed that if k is a field of characteristic zero, then the algebra 

M,(k) of n x n matrices over k is a DAZt-symplectic algebra whose Poisson bracket 

coincides with the commutator bracket [6]. This can be derived abstractly using the 

semisimplicity of the Lie algebra S’l(k). However, if Eij are the n x n matric units, 

then one can readily verify the following identity: 

[A,4 = -$c ([A,Eijl[B,Ejil - [B,Eijl[A,Ejil). 
i,i 

Since all derivations of M,(k) are inner, we see that the commutator form is given 

by 

o = -ix (dEij)(dEji). 

U 

We suspect that, in spirit, this example accounts for all prime not-commutative D Alt- 

symplectic algebras. 

Theorem 3.10. Let A be a not-commutative D Alt-symplectic algebra whose Poisson 

bracket is nonzero. If A is either a prime algebra with Jinite uniform dimension or a 
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simple algebra, then every derivation of A vanishes on the center of A and A satisjes 

a polynomial identity. 

Proof. According to the main theorem of Section 1, there is a nonzero element 3, in 

the extended centroid Sf of A such that 

{a, b} = l[a, b] for all a, b E A. 

Thus, if a E 2(A) we have a E PLY(A). We conclude from Proposition 2.6 that 

derivations of A vanish on S?(A). 

Let Caidbidci represent the alternating form which supports the symplectic structure. 

Then 

Cai[r,hl[s,cil - Cai[S,bil[r,Cil = 4r,sl 

for all r,s E A. By linearity, this equality holds for all r,s E %?“+.A. Formally, it appears 

that .5?“+ . A satisfies a generalized polynomial identity of degree 2 [8]. However, we 

must check that 

is not identically zero. If this expression is zero in the free algebra over 9’“’ . A, then 

the sum of terms which have T to the left of S must be zero: 

Cai[T,bi][S,ci] - 2TS E 0. 

Specializing S to 1 yields -AT = 0. However, 3, # 0 because the Poisson bracket 

is not always zero. 

We now invoke Martindale’s Theorem [8, 1.3.21. It states that there is an idempotent 

e E 5?? A such that 9’“+ . A is a primitive ring with minimal right ideal e( d+ . A) and 

that e(%“+ . A)e is a finite-dimensional division algebra over bf. 

If A is a simple algebra then %“+ . A = A and th e existence of a minimal right ideal 

forces A to be simple artinian [8, 1.2.21. Thus, there is a division algebra D finite 

dimensional over 2(A) such that A 21 M,(D). It follows that A satisfies a standard 

identity. 

Suppose A is prime with finite uniform dimension. Let Z be a nonzero right ideal 

of 5Yy+ A. If 0 # q E Z then there is a nonzero two-sided ideal U of A such that 

0 # qU c A. Thus Z fl A # 0. It follows that ?Y+ . A has finite uniform dimension. 

In particular, there is a bound on any finite set of orthogonal idempotents in 5!? . A. 
Hence 9”“+ . A cannot contain arbitrarily large matrix rings. It follows from the theory 

of primitive rings [8, 1.2.1, Corollary 21 that 9’“+ . A N M,(D) where D is the finite- 

dimensional division algebra of Martindale’s Theorem. We conclude that 2P.A satisfies 

a standard identity. El 

As one consequence, none of the algebras of differential operators covered by 

Corollary 3.4 (including Al) can be D Alt-symplectic. The next result suggests that 

some tightening of Theorem 3.10 will yield necessary and sufficient conditions. 
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Lemma 3.11. Let A be a k-algebra and let K be a field extension of k. Assume that 
K @.k A is a D Ah-symplectic K-algebra such that 1 ~3 A is closed under the Poisson 
bracket. Then the bracket restricted to A arises from a DAlt-symplectic structure 

on A. 

Proof. We shall freely identify A and 1 @A. Suppose $9 is a basis for K/k which 

contains 1; for each R E 93 let no, : K --f k be the k-linear map which projects to the 

coefficient of A. The linearity of the differential symbol d implies that 

D Alt2(K @k A) ‘v K @k D Alt2(A), 

so that 1. @ a(db)(dc) sends (V, IV) E Derk(K @A) x Derk(K @A) to ,?aV(b)W(c) - 
naW(b)V(c). Each xi extends to a k-linear map 72~. : D Alt2(K @A) --t D Alt2(A). Let 

w E D Alt2(K @A) be the alternating form which supports the symplectic structure on 

K@A. 
If X is a k-derivation of A it can be extended in the obvious way to 1 @ X, a 

K-derivation of K 63 A. For X, Y E Derk(A) and ,4 E 93, define 

wn(X Y) = 72n(o)(l @x, 1 @ Y). 

If one writes out fin(w) as a differential 2-form and uses the fact that X(A) CA and 

Y(A) GA, one sees that WA(X, Y) E A. Hence, 

It is immediate that each 0~ : Der&A) x Der&A) + A is k-bilinear, alternating, and 

satisfies the cocycle identity. 

Suppose a E A. For each b E A, 

ham(1 @a)(1 @b) = (1 @a,1 @b) E 1 @A. 

As a consequence, ham( 1 @ a) has the form 1 @ H for some derivation H of A. 
Now for each X E Derk(A) 

wi(X,H) = (TIE. @ l)(w(l @X, 1 @If)) 

=(ZA @ l)(w(l @X,hum(a))) 

=(71~c3 l)(l @X(a)) 

= C 

0 ifn#l 

X(a) if A= 1. 

It follows that 01 defines a symplectic stucture on A with the property that ham( 1 @ 
a) = 1 ~3 hum(u). This equality ensures that the Poisson bracket on A induced by wi 

corresponds to the inherited Poisson bracket on 1 @A. 0 

Theorem 3.12. Assume that A is a finitely generated prime k-algebra which satisfies 
a polynomial identity. If every derivation of A vanishes on %(A), then the localization 
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ZT(A)-‘A can be realized as a D Alt-symplectic algebra whose Poisson bracket is the 

commutator. 

Proof. We write 9 = B(A). Suppose that ~1,. , y, are algebra generators for A. If 

X E Der,+(.Z”-‘A) then there are zj E 9 and Uj E A such that X(yj) = Z,T’Uj. Set 

z = ziz2 . . z,. Then zX restricted to A lies in Derk(A). Hence, zX vanishes on 6. It 

follows from the invertibility of z and the quotient rule that X vanishes on EZ”-’ 3”. 

Since k-derivations of ZT’A vanish on the center %“-‘.2, we may replace A with 

T”-‘A and k with 2Zt”-‘2’. By invoking basic theorems about p.i. algebras we are re- 

duced to the case that A is a finite-dimensional central simple k-algebra. That means 

A = M,(D) for a finite-dimensional division algebra D. Obviously, A is a Poisson 

algebra under the commutator bracket. Split A so that K @k A N M,(K) for a field 

extension K. Then K @A is a D A/t-symplectic K-algebra compatible with the commu- 

tator, according to our differential formula for matrices over a field. Apply the lemma. 

4. Commutative algebras 

The basic features of a theory of symplectic structures for commutative algebras 

are folklore. That is to say, anyone familiar with the behavior of the algebra of C”- 

functions on a symplectic manifold would find the contents of this section entirely 

expected. Our exposition has considerable overlap with Loose’s paper [ 131; however, 

we take a more global point of view with a different emphasis. Our centerpiece is 

an observation which, at first glance, looks like an absurdly cheap way to build a 

symplectic form. 

Theorem 4.1. Let A be a commutative Poisson algebra. If 

Derk(A) = A . Ham(A), 

then A has a compatible symplectic structure. 

Proof. We would like to define w : Deil(A) x Derk(A) + A by 

o C riham(ai), C sjham(bj) = C rlsj{ai, bj}. 
I j ij 

To eliminate any ambiguities, we need to know that if C,riham(ai) = 0, then 

Ci,jrisj{ai, bj} = 0, for all Sj, bj E A. 
This is clear because 

C risj{ai, bj} = C sic ri{ai, bj} = C sj (C ,dam(ai)(bj)) 
bj j i .i i 
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Clearly, o is an alternating A-bilinear form. We next evaluate w(X,ham(b)) for 

X E Derk(A). Writing X = xi rihUm(Ui), 

0(X, ham(b)) = C ri{Ui, b} = X(b). 

Finally, we must show the cocycle condition. By the additivity of o, it suffices to 

calculate d~(Xo,Xi,Xz) when Xi has the form aiham(bi). Explicitly, 

The nested brackets cancel by the Jacobi identity. A careful accounting shows that 

each of the other terms appears twice, once with oath sign. 0 

It is worth observing that if Der@) = A.Hum(A) then there is a unique symplectic 

structure compatible with the Poisson bracket. 

We suspect that the condition Derk(A) = A . Hum(A) is the “correct” definition of 

symplectic for commutative Poisson algebras. Implicitly, Loose argues that the condi- 

tion is equivalent to A being Q-symplectic. The added ingredient is the regularity of 

A. (This is not an unreasonable hypothesis since symplectic manifolds are smooth by 

definition.) We discuss some of the interrelationships among Derk(A) = A . Hum(A), 
regularity, and symplectic structure here and at the end of Section 5. 

Theorem 4.2. Zf A is a regular afine symplectic algebra, then 

Derk(A) = A . Hum(A). 

Proof. Since A is regular, L?‘(A) is a finitely generated projective A-module. Then 

Q’(A) N (Q’(A))** Y (Derk(A))* where f E Q’(A) is identified with f E Ah’(A) = 

(Derk(A))*. 
Assume that A is supported by o E AZ?(A) and that Y E Derk(A). Since iu(o) E 

Ah’(A) we may write ir(o) = Cujdbj for some Uj and bj in A. Recall that -dbj = 

iha,,@, j(O). It follows that for 

Z = -C ajhum(bj) 

we have ir(w) = iz(o). By nondegeneracy, Y = Z, i.e. Y E A . Hum(A). 0 

Corollary 4.3. Assume that A is a regular ufJine Poisson algebra. Then A has a 
compatible symplectic structure if and only if Derk(A) = A . Hum(A). 

The corollary can be used to show quickly that if 9 is a finite-dimensional Lie 

algebra over k then k[3] is never symplectic. The underlying commutative algebra 

in this case is the ordinary polynomial ring k[ Ti, . . . , T,,] where T,, . . . , T, is a basis 

for ?3. It is well known that A4 = Derk(k[T,, . . . , T,]) is the free K[Tl,. . . , T,]-module 

on a/aT,, . . . , d/aT,,; as such it is a graded k[T,, . . , T,]-module. The tth homogeneous 
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component, M”, consists of all of those derivations X such that X(Tj) is a homogeneous 

polynomial of degree t for j = 1,. . . , n. For example, ham(T,) E 44’ for each m. Since 

ham(ab) = a .ham(b) + b. ham(a) for all LI and b in a commutative algebra, we see that 

Hum(K[q) C c M’. 
t>1 

Hence, 

k[Y] . Hum(k[29]) C CM’. 
t>l 

Since k[Y] is regular, it cannot be symplectic. On the other hand, one does have a 

“coadjoint orbit theorem”: the orbits of the appropriate associated algebraic group act- 

ing on ‘??* are all symplectic varieties ([l], and see the bibliography of [9]). If g* 

happens to possess a dense orbit then the rational function field k(3) is symplectic - 

a sheerly ring-theoretic result which can be found in [ 131. 

We have already observed that if A is regular then symplectic is indistinguishable 

from Q-symplectic. It turns out that if A is Q-symplectic, it must be regular [13]. 

Theorem 4.4. Suppose that A is a commutative A-symplectic algebra supported by 

an element of the form o = ~~=,ajdbjdcj. Then 
(i) A . dA (in A’) is a jinitely generated projective A-module; 

(ii) Derk(A) is a finitely generated projective A-module; 
(iii) Derk(A) = A . Ham(A). 

Proof. We argue that 

(-aldbl,ham(cl)),..., (-a,db,,ham(c,)), (aidci,ham(b,)), . . . ,(a,&,ham(b,)) 

is a projective basis for A . dA. (We are making the identification of ix with X.) 

Suppose h E A: 

c - iham(c,)(dh)ajdbj + c &m(b,)(dh)ajdcj 

= Cuj{h,cj}dbj - Caj{h,bi)dcj 

- -iham ajdbjdcj 
> 

= -iha,@) = dh. 

(In proceeding from the second expression to the third we used the DGA-derivation 

formula ix(dbdc) = ix(db)dc - dbix(dc).) We have proved (i). 

In general, if (fi, ham(el )), . . . , ( fm, ham(e,)) is a projective basis for A . dA, then 

for all t E A, 

dt = c hum(er)(t)fp. 
P 

Hence for X E Derk(A), 

X(t) = ix(dt) = c ham(e, 
P 
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Thus, 

x = 1 &(fp)~M~) 
P 

and the map sending X to ix(fp) is A-linear. Therefore, 

(ha&e! ), f; )7.. . > (h4% 1, f, 1 

is a projective basis for Derk(A), where f(X) = ix(f). Properties (ii) and (iii) follow. 

0 

Corollary 4.5 (Loose [13]). Assume that A is an afine commutative algebra. If A is 

Q-symplectic, then A is regular. 

Proof. In this case A . dA = Q’(A). Apply (i) of the theorem. 0 

The corollary may be true when A is simply symplectic. The Lipman-Zariski conjec- 

ture states that (for reduced affine algebras) if Derk(A) is a finitely generated projective 

A-module, then A is regular. 

The classical example of a symplectic manifold is the cotangent bundle. The anal- 

ogous algebraic construction for a commutative regular domain is also symplectic; a 

proof can be found in [ 131. We will present another argument which avoids localization 

and explicitly constructs derivations. 

Let A be a (commutative) regular k-affine domain. Form the ring of differential 

operators S(A) = D(A), a naturally filtered algebra. Its associated graded algebra is 

the affine algebra A[Derk(A))] h w ere A[M] denotes the symmetric A-algebra on the 

module M [14, 15.4.51. Hence, the commutator on 9(A) makes A[Derk(A)] into a 

Poisson algebra; the bracket is the unique one such that 

{a,b}=O for a,bEA, 

{Y, b} = Y(b) for Y E Derk(A) and b E A, 

{Y,Z}=YoZ-ZoY for Y,z~Derk(A). 

(We warn the reader that there are two associative products for elements of Derk(A): 

composition and the commutative product in A[Derk(A)]. For this reason we will take 

care to use the small circle for composition and we will write {*, *} for the Lie 

bracket on Derk(A).) The first step in analyzing the algebra A[Derk(A)] is to construct 

derivations on a symmetric algebra. The argument is routine. 

Lemma 4.6. Let A be a commutative k-algebra and let M be an A-module. Assume 
Eo E Derk(A) and El : M -+ A @M is a k-linear map such that El(am) = Eo(a)m + 
aE,(m). Then there exists E E Derk(A[M]) with EIA = EO and EIM = El. 

From now on we will assume A is a regular k-aEine domain and set B to be the 

“cotangent algebra” g&2(A) = A[Derk(A)]. We repeatedly exploit the observation that 
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a differential or derivation on B is determined by its behavior on A U Der&4). By 

regularity, Q’(A) is a finitely generated projective A-module, say with projective basis 

(fi,X1), . . , (fn,Xn). Moreover, (Xi, f,), . . . , (Xn, f,) is a projective basis for &q(A). 

Use the lemma to define 8, E Derk(B) for t = 1,. . . ,n so that a,(a) = 0 for 

a E A and J,(Y) = f,(Y) for Y E Derk(A). Apply the lemma a second time: for each 

Z E Derk(A), define an extension to Z in Derk(B) by Z(Y) = C,Z(f,(Y))& for each 

Y E Derk(A). 

Proposition 4.7. Zf L?‘(A) has a projective basis (f~,Xl),. . .,(fn,Xn), then a’(B) is 

a finitely generated projective B-module with basis 

(d&t 4 1,. . . , (dX,,d,),(fi,R,),...,(f,,~,). 

In particular, B is regular. 

Proof. It suffices to show that 

c aj(v)dxj + c&(v)f, = dv 

j i 

for generators v of B in A U Der,&!). 
Suppose v = a lies in A. By construction, &(a) = 0. Therefore, 

C aj(a)dxj + xX-j(a)& = CX,(a)f, = da. 

i J j 

Suppose v = Y lies in Der&l). By construction, a,(Y) = f,(Y). Using the formula 

for Xj and the fact that X, and Xj(f,( Y)) commute in the algebra B, we obtain 

This last expression is dY. 0 

Corollary 4.3 tells us that we will know that B is symplectic once we establish the 

next assertion. 
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Proposition 4.8. Derk(B) = B . Hmz(B). 

Proof. According to the previous proposition, Der,&B) is generated as a B-module by 
L 

c’,,. ..,&,Xl , . . . ,J?,. So it suffices to show that each a, and 2, lie in B. Ham(B). We 

test derivations of B on A U Derk(A). 
If J‘ E @(A) is written f = Ca,db, then it induces a well-defined derivation on B, 

f If = C a,ham(b,). 

Then f”(c) = 0 for all c E A. If Y E Derk(A) then 

f”(Y) = Ca,{h,,Y} = -Ca,Y(b,) = -f(Y). 

For the special case f = ft we conclude that 8, = (- ft)” E B . Ham(B). 

Next we look at any 2 E Derk(A) and compute 

When restricted to a E A, the evaluation of the expression is {Z, a}. This is the same 

as Z(a) or, equivalently, Z(a). When we evaluate the expression on Y in Derk(A) we 

get 

ZOY-YOZ-~f;(Y)zox,+~~(Y)&oz 
t t 

=zoY-Yoz-~J;(Y)zoxt+Yoz 

=zoy-zo ( ) ~J;Tuwt +Cz(f,(Y))x,=zoY-ZoY+i(Y). 
t t 

We conclude that 

ham(Z) - C {z,x,ja, = 2. 

It follows that Z E B . Ham(B). 0 

If % is an alternating bilinear form on the finite-dimensional vector space V, we 

can now determine when k[23] is symplectic. We claim it is symplectic if and only 

if 23 is nondegenerate. Suppose that there is a nonzero 2’ in V such that 23(2’, u) = 0 

for all v E V. Then T E 93(k[8]). But (alar)(r) = 1. Since there is an element of 

the Poisson center which does not vanish under all derivations, k[23] is not symplectic 

(Proposition 2.6). Conversely, if 23 is nondegenerate then we can find a basis for V 

so that k[23] is the polynomial algebra in 2n variables k[Tl, . . . , T,,,S,, . . . ,S,] where 

%(Ti, Tj) = %(Si,Sj) = 23(Si, TJ = 0 for all i # j; and %3(S;, Ti) = 1. 

Clearly, k[%] is isomorphic as a k-algebra (ignore the grading!) to the symplectic 

algebra grSJ(k[T1,. . . , T,]). 
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We close this section by analyzing the “singular” cotangent algebra for the 

The associated graded ring in question is a Poisson subalgebra of the symplectic 

k[ T, S], namely 

B = k + T2k[T,S] +S2k[T,S] + TSk[T,S]. 

cusp. 

plane 

(a) Every derivation of B extends to a derivation of k[T,S]. If { E Derk(B) then < 

certainly extends to k( T, S). A priori, i(T) may lie in k( T, S). However, 

Tc(T) = ;i(T2) E B 

and 

Thus, S2(Z’[(T)) = T(S*[(T)) exhibits two factorizations in k[T,S]. Since the poly- 

nomial ring is a UFD, we have T]TIJ(T) in k[T,S]. It follows that c(T) E k[T,S]. 

Similarly, r(S) E k[T,S]. 
(b) Every derivation of B can be written uniquely in the form a(13/8T) + &a/%) 

where a,b E k[T,S] and neither a nor b has a constant term. Since k[T,S] is a polyno- 

mial algebra, its derivations comprise a free module of rank 2 on (ajar) and (a/%). 

If a(a/aZ) + b(d/%) is a derivation which stabilizes B then 

a a 
az(T2) + b-&T’) E B. ’ 

That is, 

aT E B. 

Thus, a has no constant term. The same argument can be made for b. Conversely, all 

derivations of the required form do stabilize B. As to uniqueness, if the restriction of 

a(a/aT) + b(a/aS) to B is zero then aT = 0 and bS = 0. 
(c) B is a symplectic algebra compatible with the bracket. The idea is to restrict the 

symplectic form on k[T,S] to B. Recall that ham(T) = -(a/C%) and ham(S) = (alaT). 
Thus, the symplectic structure on k[T,S] is supported by 

+ b$,c; + d& 
> 

= o(uhum(S) - b hum(T),c ham(S) - d hum(T)) 

=bc-ad. 

If the two derivations above lie in Derk(B) then the total degree of bc, as well as ad, 
is at least 2. In other words, w takes its values in B! 

(d) Derk(B) # B. Hum(B). Obviously, T& is a derivation of B. By degree consid- 

erations, T$ must lie in Hum(B) if it has any chance of belonging to B . Hum(B). 
On the other hand, the computation 

hum(Tisj) = jTiS/-1; _ iTi--‘S/$ 
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shows that any expression in Hum(B) which has T(L?/&“) in its “support” must also 

have S( a/%). 

We reiterate. There are commutative affine domains B which are symplectic but 

which fail to satisfy Derk(B) = B. Hum(B). Based on analogy with Corollary 3.4, we 

always expect grG&4) to be symplectic (in the Alt sense) for an affine domain A. In 

contrast, it is possible to modify the argument which will appear in Proposition 5.3 to 

prove that if Der is generated by Ham as a g&@(A)-module, then Der@) is a finitely 

generated projective A-module. 

5. Symplectic potentials 

Suppose that A is a A-symplectic k-algebra supported by o. One way to guarantee 

that do = 0 is to find an exact o. That is, one may have a 8 E A’ with d9 = co. 

In this situation 0 is called a A-symplectic potential. According to Theorem 2.2b, 

a A-symplectic potential always induces a symplectic potential. If i;i = dc then for 

a,b E A, 

{a, b} = G(ham(a), ham(b)) 

= ham(a)&ham(b)) - ham(b)&ham(a)) - @[ham(a),ham(b)]) 

={a,8~ham(b)}+{8~ham(a),b}-6oham({a,b}). 

Thus there is a k-linear map f = 80 ham : A + A such that 

{a>b] = {a>f(b)) + {f(a),bl - f({a,b)). (t) 

Notice that f vanishes on 922’(A) because ham does. 

Now assume that A is commutative. Then 5 is an A-module homomorphism; in this 

case f lies in Derk(A). (Huebschmann [9] says A has a “Poisson potential” when 

(t) holds for some f E Derk(A). We do not know of a good definition for Poisson 

potential when A is not commutative.) 

Theorem 5.1. (a) If the symplectic algebra A is supported by a potential, then there 
exists a map T : A -+ A which is a derivation of the Poisson-bracket Lie algebra and 
which satisfies Tl.YS’(A) = id. 

(b) Assume A is an algebra all of whose derivations are inner. If there is a Lie 

derivation of A under the commutator bracket which is the identity on 52’(A), then 
the commutator symplectic structure is supported by a potential. 

Proof. (a) We assume that the symplectic structure is supported by d0 with 0 E 

Alt’(A). Set f = 0 o ham, so that equation (t) holds. Define T by T(c) = c-f(c) for 

all c E A. If one replaces f(a) with u-T(a) and f(b) with b-T(b) in (t), one obtains 

T({a,b}) = {T(a), b} + {a, T(b)}. 

Since f vanishes on 92’(A), we see that T(c) = c for all c E Y%(A). 
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(b) If T is the requisite derivation then we may reverse the argument of part a to 

construct a k-endomorphism f : A + A which satisifies (i_) for the commutator bracket 

and vanishes on Z(A). Since ad induces an isomorphism A/%(A) -+ Der&) and 

f(%(“(A)) = 0, there is an element 4 E AZ?(A) with 4 o ad = f. It follows from the 

derivation of (t) that d4 supports the commutator symplectic structure. 0 

The connection is known to be much tighter when A = C?(M). Avez et al. (cf. 

[12, p. 331) prove that if M is noncompact and H is a symplectic potential, then every 

Lie derivation of A has the form X + ;l(id - 6) where X is a Poisson derivation (and 

so is an associative algebra derivation), 3, is a scalar, and 1 pulls back 0. If o does 

not support a potential, they conclude that every Lie derivation of A lies in Derk(A). 

Better yet, even if M may be compact, it is generally true that every Lie derivation of 

A which vanishes on 1 is an associative derivation. 

If one examines not-commutative algebras, then these results about Lie derivations 

are reminiscent of conjectures made by Herstein in [7]. For example, Kaplansky and 

Martindale [ 151 prove that every Lie derivation of M,(k) takes the form X + 2 . tr 

where X is an associative derivation, 1 E k, and tr denotes the trace. Notice that the 

symplectic form given in section 3 is u = dO where 

6 = -ic Eij(dEji). 

LJ 

A calculation shows that the function f in part (a) takes the form 

1 -- 
n c Eij(dEji)(ad(b)) = b - itr(b) . I 

i.i 

for all b E M,,(k). 

Example 1. If 9 is a finite-dimensional semisimple Lie algebra, then the commutator 

Poisson bracket on U(9) is compatible with a symplectic structure supported by a 

potential. 

We will need standard facts about the enveloping algebra, which can be found in 

[5]. Write U = U(9). First, every associative algebra derivation of U is inner. (If D E 

Derk( U), then D(3) C U,, for some n, where U,, is the finite-dimensional @%-module 

spanned by products of m elements from B with m < n. Thus D E H’(Y, 17,). But the 

cohomology group vanishes by Whitehead’s Lemma and semisimplicity; there is an 

a E U,, with D(x) = [a,x] for all x E 9. The equality extends to all x E U.) Second, 

U = Z(U) @ [U, U] 

as vector spaces. Define T to be the vector space projection of U onto b(U). Then 

T([a,b]) = 0 = [T(a),b] + [a, T(b)] for all a,b E U 

and TIZZ’(U) = id. Apply Theorem 5.1(b). 
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Example 2. Al has no symplectic structure supported by a potential. 

Dixmier [5] proves that all derivations of Al are inner. In [6], the author conjectures 

that the commutator symplectic structure on Al fails to have a LDAZf-potential. As 

we saw in Section 4, the conjecture amounts to proving that there is no potential (i.e., 

not even one in Alt) for the commutator structure. By Section 1, once we have the 

assertion for the Poisson bracket coinciding with the commutator bracket, we have the 

general claim made in the statement of the example. But Joseph [lo] has proved that 

all Lie derivations of Al are inner. They must vanish on 1. Thus, there is no potential 

by Theorem 5.1(a). 

For Example 3, we will show the known result (see [ 131) that the natural symplectic 

structure on the “cotangent algebra” g&(A) (f or a commutative regular affine domain 

A) is supported by a potential. It turns out that this is true for transparent algebraic 

reasons. 

Definition. B is a graded Poisson algebra of degree --s if it is an N-graded algebra 

with a Poisson bracket such that {B,, B,} C Brn+_$ for all m,n > 0. (Here we set 

B, = 0 whenever r < 0.) 

The algebra g&9(,4) is a graded Poisson algebra of degree -1 (even when A is not 

regular). 

Theorem 5.2. Let B be a commutative graded Poisson algebra of degree -1 such 

that Derk(B) = B. Ham(B). Then the unique symplectic structure on B compatible 

with the Poisson bracket is supported by a potential. 

Proof. The potential comes from the Euler derivation, which exists on any graded 

algebra. If R is a graded algebra define D : R --f R on nonzero homogeneous elements 

by D(r) = (deg r)r. It is obvious that D is a derivation. 

Since Derk(B) = B . Ham(B) there is a unique o E Ah2(B) which is compatible 

with the Poisson bracket (see Section 4). We claim that din(o) = w. To check this, 

we need only evaluate both sides on Ham(B) x Ham(B), 

dibw(ham(a), ham(b)) = ham(a)(ino(ham(b)) - ham(b)(ino(ham(a))) 

-ino([ham(a), ham(b)]) 

= {a,o(D,ham(b))) - {b,dD,ham(a))) 

-u(D, ham{a, b}) 

= {a,D(b)} - {b,D(a)} - D({a,b]). 
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There is no loss of generality in assuming that u and b are homogeneous. Thus, 

diDO.$hm(~),hum(b)) = (degb){a,b} + (dq){a,b} - Vega + de@ - l){a,b) 

= {a, 6) 

= o(hum(u), hum(b)). 0 

Example 3. If A is a commutative regular affine domain, then the natural symplectic 

structure on grg(A) is supported by a potential. 

Set B = gd(A). Then B is regular and so, by Theorem 4.2, Derk(B) = B+Hum(B). 

The assertion follows from the theorem above. There is a more traditional differential 

formula for the symplectic potential. Let (fi ,X1 ), . . . , ( fn,Xn) be a projective basis for 

C?‘(A), where Xj f Derk(A). We claim that cl=iXjfj E Q’(B) “coincides” with i&w) 

under the identification of Q’(B) and Ah’(B) arising from regularity. We must show 

that 

iy(C > Xjfi = w(D, Y) for all Y E Derk(B). 

Once again, we need only test equality for Y E Hum(B). We can reduce further 

by only evaluating at Y = hum(b) for b from an algebra generating set for B. For 

example, we need only consider b E AUDerk(A). If a E A then ihamca)( fj) = 0 because 

{A,A} = 0; notice that o(D,hum(a)) = D(u) = 0 since a E B”. Thus, 

ihamca) (CXjh) = 0 = W(D, hum(u)). 

If Z E Derk(A) then 

because (Xi, Fj), . . . , (X,, f,) is a projective basis for Derk(A). That is, 

Z = iz (CXjh) . 

On the other hand, w(D,hum(Z)) = D(Z) = Z. Thus, 

iz (CX;l;) = Z = w(D,hum(Z)). 

As we discussed in the paragraph following Theorem 5.1, the existence of a potential 

should tell us something about the structure of Lie derivations. In the very special case 

when A is the polynomial ring in one variable, g&2(A) is the symplectic plane. It is 

known [lo] in this case that every Lie derivation looks like [ + A( id - 0) where 5 lies 

in Hum, A is a scalar, and D is the Euler derivation. 
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From the algebraic point of view, it is not obvious what is gained by having a 

symplectic potential. We illustrate the power of this added information in the next 

result. 

Proposition 5.3. Let A be a commutative Poisson algebra and assume that Derk(A) = 

A. Ham(A). If the unique compatible symplectic structure is supported by a potential, 
then Derk(A) is a jinitely generated projective A-module. 

Proof. Let 0 E Al?(A) be the symplectic potential and define E E Derk(A) by E = 

-8 o ham. Since every derivation lies in the module generated by Ham(A), we may 

write 

E = Crjham(sj) for some rj,sj E A. 

We argue that 8 = Crjdsj in Alt’(A). As usual, we need only test the equality by 

evaluation on derivations in Ham(A). If a E A, 

= -C rjham(sj)(a) 

= -E(a) 

= fI(ham(a)). 

Consequently, the symplectic structure on A is supported by de E D Alt(A). The 

conclusion follows from Theorem 4.4. 0 
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